- Constructing Truth Digitally - https://constructedtruth.com -

Using the AWS DynamoDB Java API – Spring Boot Rest Application

Introduction

In this tutorial we use the Amazon Web Services Java 2 Application Programming Interface (API) to create a Rest application using Spring Boot that reads and writes to a DynamoDB database. This tutorial assumes AWS familiarity, Java programming experience, and Spring Boot experience. However, even without this experience, this tutorial should still prove useful, as it provides considerable supplementary resources for you to review. If you want to learn the AWS DynamoDB Java API then this tutorial is for you.

Here we create a simple database consisting of “observation stations” and “observations” gathered via a camera. Whatever…suspend disbelief and just go with it. Now, suppose, the stations require a means of uploading observations to an associated DynamoDB table. We decide upon a Rest API for stations to upload data. We implement this API using a Spring Boot Rest application. Again, if this all sounds suspect, suspend disbelief and focus on the AWS code and not the application design.

In this tutorial we,

This tutorial’s purpose is to explore the DynamoDB, not introduce Spring Boot, Rest, or JSON and assumes basic knowledge of all three. However, if new to any of these topics, links are provided to learn them before continuing.

NoSQL Databases

DynamoDB is a key-value and document NoSQL database. If unfamiliar with NoSQL Document databases, you should familiarize yourself before continuing. The following is an introductory video introducing NoSQL Databases.

The following are two good written introductory articles covering NoSQL and DynamoDB.

https://youtu.be/ujWV3-m1pLo

Note that Amazon also offers DocumentDB [3], which we could use as an alternative to DynamoDB. However, DocumentDB will be covered in a different tutorial.

A DynamoDB database can be described as the following. Tables consist of items. An item has one or more attributes. In a table you define the partition key and optionally define a sort key. The partition key is a key-value pair that not only uniquely identifies an item, it determines how the item is distributed on a computer’s storage. A sort key not only logically sorts items, it stores the items accordingly. Obviously, there is more to NoSQL physical storage and how it achieves its scalability, but that is beyond this tutorial’s scope.

Amazon Web Services & DynamoDB

Amazon DynamoDB is a NoSQL key-value and document database offered as a cloud service. It is fully managed and allows users to avoid the administrative tasks associated with hosting an enterprise database. As with almost all Amazon’s offerings, it is accessible via a Rest API.

Amazon offers software development kits (SDKs) to simplify working with the Rest API. The languages offered are Java, C++, C#, Ruby, Python, JavaScript, NodeJs, PHP, Objective-C, and Go. In this article we use the Java API. There are currently two versions of the API, in this tutorial we use the Java 2 SDK.

The Java 2 AWS SDK is a rewrite of the Java 1.1 AWS SDK and changes from a more traditional programming paradigm of instantiating objects using constructors and then setting properties using setters to a fluent interface/builder programming style.

Fluent Interface

The fluent interface is a term created by Martin Fowler and Eric Evans. It refers to an programming style where the public methods (the API) can be chained together to perform a task. It is used by the AWS Java SDK 2.0 when using builders. The builder tasks perform tasks but then return an instance of the builder. This allows chaining methods together. For more information on the fluid interface and builders, refer to this blog post: Another builder pattern for Java [4].

DynamoDB Low-Level API

As with all AWS APIs, DynamoDB is exposed via Rest endpoints. The AWS SDKs provide an abstraction layer freeing you from calling Rest directly. Above that layer, the Java SDK provides a class named DynamoDBMapper that allows working with DynamoDB similarly to the Java Persistence Framework (JPA). Although useful, using the lower-level API is not that difficult. Moreover, there are many situations where you would not wish to create a dependency in your object model that relies on DynamoDB.

For example, suppose we implemented a system that stored widgets in DynamoDB. If using the DynamoDBMapper, the Widget model class would be dependent upon DynamoDB via annotations mapping the class to the Widgets table.

Alternatively, if we do not wish to use the DynamoDBMapper we can implement something similar to the following diagram. It is a typical DAO pattern, where the only direct dependency upon the AWS SDK is the WidgetDaoImpl class. For more information on the DAO design pattern, refer to the following introductory article: DAO Design Pattern [5].

In this tutorial on the AWS DynamoDB Java APl, we use the SDKs direct calls to the underlying DynamoDB Rest endpoints. As an aside, note that we do not use the DAO design pattern, instead putting the data access logic directly in the controller class for brevity. We do, however, use the Spring MVC design pattern using Rest.

Tutorial Use-Case – Station Observations

Imagine we have stations responsible for taking photo observations. A station has a coordinate, address, and a name. A station has one Coordinate. A station has one address. A station can have unlimited observations.

Although this tutorial does not discuss NoSQL database design, from the diagram below it seems reasonable we need two tables, Station and Observation. Moreover, as the Observation table is very write intensive – stations will be sending observations to the application on a continuous basis – it makes sense to not include observations as a collection within a Station instance but keep it as a separate table. Remember, these are JSON documents, not relational tables. It is unreasonable to design Observations as a list of items within a Station and would lead to an excessively large and unwieldy database.

If there were enough Stations, for even more efficiency we might create a separate table for each station’s observations. This would allow greater throughput for both writing and reading observations. But, in this tutorial we simply define a stationid to identify an observation’s station and will create an index on this value.

DynamoDB Console

The AWS Management Console provides an easy web-based way of working with Amazon’s cloud services. Although not covered in this tutorial, for those new to AWS, here is a short video by Amazon explaining the Management Console. Note that AWS also offers a command-line interface and Application Programming Interfaces (APIs) for accessing its cloud services.

Before beginning the programming portion of this tutorial we must create the DynamoDB database.

Create Station Table

Creating Station Items

Remember, DynamoDB is schema-less. We create an item but do not define a table’s schema. Instead, we create a couple items with the desired structure.

We created two items in the Station table. Here are the two items as JSON.

{
  "address": {
    "city": "Potomac",
    "street": "230 Falls Street",
    "zip": "22333"
  },
  "coordinate": {
    "latitude": 38.993465,
    "longitude": -77.249247
  },
  "id": 221,
  "name": "Potomac Falls"
}
{
  "address": {
    "city": "Frederick",
    "street": "9871 River Street",
    "zip": "221704"
  },
  "coordinate": {
    "latitude": 39.23576,
    "longitude": -77.4545
  },
  "id": 234,
  "name": "Monocacy River"
}

You can view the JSON after creating an item by selecting the item and then selecting the text view in the popup.

Note that the preceding JSON document is generic JSON. The actual JSON, as stored by DynamoDB (including datatypes), is as follows. Where the M, S, N, SS, etc. represent the element datatypes.

{
  "address": {
    "M": {
      "city": {
        "S": "Frederick"
      },
      "street": {
        "S": "9871 River Street"
      },
      "zip": {
        "S": "221704"
      }
    }
  },
  "coordinate": {
    "M": {
      "latitude": {
        "N": "39.23576"
      },
      "longitude": {
        "N": "-77.4545"
      }
    }
  },
  "id": {
    "N": "234"
  },
  "name": {
    "S": "Monocacy River"
  }
}

The DynamoDB datatypes are:

For example, in the following JSON document an observation’s address and coordinate are both Map datatypes, the city, street, zip are String datatypes, and the latitude and longitude are Number datatypes.

You can toggle between JSON and DynamoDB JSON in the popup window, as the following illustrates (note the DynamoDB JSON checkbox).

Create Observation Table

After creating the Station table we need to create the Observation table.

Composite Key (Partition Key & Sort Key)

The partition key is a table’s primary key and consists of a single attribute. DynamoDB uses this key to create a hash that determines the item’s storage. When used alone, the partition key uniquely identifies an item, as no two items can have the same partition key. However, when also defining a sort key, one or more items can have the same partition key, provided the partition key combined with the sort key is unique. Think of it as a compound key.

The Sort key helps DynamoDB more effectively store items, as it groups items with the same sort key together (hence the name sort key, as it sorts the items using this key).

An observation should have an id that identifies it and observations should be sorted by station, so we defined a stationid as the table’s sort key.

Create Sample Observations

As with the Station table, create some Observation items rather than define a schema.

The following is a JSON list of four observations. The image base64 string is truncated so it can be easily displayed here. You can obtain the original file, named observations.json, from this tutorial’s Git project.

{
  [
    {
      "stationid": 221,
      "date": "1992-03-12",
      "time": "091312",
      "image": "/9j/4AAQSkZJRgABAQAAYABg <snip> kf/9k="
    },
    {
      "stationid": 221,
      "date": "1999-09-22",
      "time": "071244",
      "image": "/9j/4AAQSkZJ <snip> D9KhoA//2Q=="
    },
    {
      "stationid": 234,
      "date": "2001-11-09",
      "time": "111322",
      "image": "/9j/4AAQSkZ <snip> WoGf/9k="
    },
    {
      "stationid": 234,
      "date": "2013-01-12",
      "time": "081232",
      "image": "/9j/4AAQS <snip> q5//2Q=="
    }
  ]
}

Base64 Encoding

Images are binary. However, all binary can be represented by a String provided it is encoded and decoded correctly. Base64 is an encoding scheme that is converts binary to a string. It’s useful because it allows embedding binary data, such as an image, in a textual file, such as a webpage or JSON document. DynamoDB uses Base64 format to encode binary data to strings when transporting data and decode strings to binary data when storing the data. Therefore, the image sent to the Rest endpoints we create should be base64 encoded.

Create IAM Application User

Before beginning the Spring Boot application, we need a user with programatic access to the AWS DynamoDB API. If you are unfamiliar with IAM, the following introductory video should prove helpful. Otherwise, let’s create a user.

Spring Boot Application

Now that we have created the two needed tables and created a user we can begin the sample application. We create a Rest API for stations to save, retrieve, update, and delete observations. Not much explanation is devoted to Spring Boot, so if you have never created a Spring Boot Rest application you might consider completing a tutorial or two on Spring Boot and Rest. The following are links to two tutorials; however, there are many more on the web.

Setup Project

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.tutorial.aws</groupId>
  <artifactId>DynamoDbTutorial</artifactId>
  <version>0.0.1-SNAPSHOT</version>
  <parent>
    <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-parent</artifactId>
      <version>2.0.5.RELEASE</version>
  </parent>
  <properties>
    <java.version>1.8</java.version>
  </properties>
  <dependencyManagement>
    <dependencies>
      <dependency>
        <groupId>software.amazon.awssdk</groupId>
	<artifactId>bom</artifactId>
	<version>2.5.25</version>
	<type>pom</type>
	<scope>import</scope>
      </dependency>
    </dependencies>
  </dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-test</artifactId>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>com.jayway.jsonpath</groupId>
      <artifactId>json-path</artifactId>
      <scope>test</scope>
    </dependency>
    <dependency>
      <artifactId>auth</artifactId>
      <groupId>software.amazon.awssdk</groupId>
    </dependency>
    <dependency>
      <artifactId>aws-core</artifactId>
      <groupId>software.amazon.awssdk</groupId>
    </dependency>
    <dependency>
      <groupId>software.amazon.awssdk</groupId>
      <artifactId>auth</artifactId>
    </dependency>
    <dependency>
      <artifactId>dynamodb</artifactId>
      <groupId>software.amazon.awssdk</groupId>
    </dependency>
  </dependencies>
  <build>
    <plugins>
      <plugin>
        <groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-maven-plugin</artifactId>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-jar-plugin</artifactId>
        <version>3.1.1</version>
        <executions>
          <execution>
	    <phase>package</phase>
	    <goals>
              <goal>jar</goal>
	    </goals>
	    <configuration>
 	      <classifier>client</classifier>
	      <includes>
	        <include>**/factory/*</include>
	      </includes>
	    </configuration>
          </execution>
        </executions>
      </plugin>
    </plugins>
  </build>
</project>

In the POM we define the AWS Bill of Materials (BOM) and the required AWS libraries. Note that when using a BOM it is unnecessary to specify the library versions, as the BOM manages versions. We also define the Spring Boot libraries required.

cloud.aws.credentials.accessKey=AK <snip> WP
cloud.aws.credentials.secretKey=yLJJ <snip> asUR
cloud.aws.region.static=us-east-1

Create Spring Boot Application Class

package com.tutorial.aws.dynamodb.application;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.ComponentScan;

@SpringBootApplication
@ComponentScan({ "com.tutorial.aws.dynamodb" })
public class SiteMonitorApplication {

    public static void main(String[] args) {
        SpringApplication.run(SiteMonitorApplication.class, args);
    }
}

Create Observation Data Object

package com.tutorial.aws.dynamodb.model;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.util.List;

public class Observation {
	private long stationid;
	private String date;
	private String time;
	private String image;
        private List<String> tags;
	
	public long getStationid() {
		return stationid;
	}

	public void setStationid(long stationid) {
		this.stationid = stationid;
	}

	public String getDate() {
		return date;
	}

	public void setDate(String date) {
		this.date = date;
	}


	public String getTime() {
		return time;
	}


	public void setTime(String time) {
		this.time = time;
	}

	public String getImage() {
		return image;
	}

	public void setImage(String image) {
		this.image = image;
	}

	public void setTags(List<String> tags) {
		this.tags = tags;
	}
	
	public List<String> getTags() {
		return this.tags;
	}
	
	@Override
	public String toString() {
		try {
			ObjectMapper mapper = new ObjectMapper();
			return mapper.writeValueAsString(this);
		} catch (JsonProcessingException e) {
			e.printStackTrace();
			return null;
		}
	}
}

The Observation object’s attributes are the same as in the JSON Observation document. Notice in the toString method we used an ObjectMapper from the Jackson library. We did not include this library in our POM, as the spring-boot-starter-web library includes this library.

The ObjectMapper maps JSON to Objects and Objects to JSON. It is how Spring Rest accomplishes this task. In the toString method we are telling the ObjectMapper instance to write the Observation object as a JSON string. For more on the ObjectMapper, here is a tutorial that explains the class in more depth: Jackson ObjectMapper [14].

Create Rest Controller

The Rest Controller provides the external API visible to Stations to send data to our application. Through the API, client applications will transmit data to the DynamoDB database. Different stations can develop its own client application in any language that supports Rest. The only requirement is that the station’s data follows the expected JSON format.

Let’s create a Rest Controller to define our application’s API.

package com.tutorial.aws.dynamodb.api;

import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import com.tutorial.aws.dynamodb.model.Observation;

@RestController
@RequestMapping(value = "/observations")
public class ObservationApiController {

	@PostMapping("/observation")
	public void createObservation(@RequestBody Observation 
          observation) {
	  System.out.println(observation.toString());
	}	
}

Test using Postman

Postman is a useful tool for testing JSON endpoints. If you have never used Postman, you might consider completing a couple tutorials first.

http://localhost:8080/observations/observation
JSON Request in Postman for saving Observation.
{"stationid":221,"date":"1992-03-12", "time":"091312","image":"/9j/4AAQSkZJRgAB <snip> Wxkf/9k=","tags":null}

Create DynamoDB Client

Now that we have the basic Spring Boot application in place, we can start building the actual API to DynamoDB. But before working with DynamoDB, we need to create a DynamoDBClient instance.

package com.tutorial.aws.dynamodb.service;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import com.tutorial.aws.dynamodb.model.Observation;
import software.amazon.awssdk.auth.credentials.AwsBasicCredentials;
import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;


@Service
public class ObservationService {

  @Value("${cloud.aws.credentials.accessKey}")
  private String key;

  @Value("${cloud.aws.credentials.secretKey}")
  private String secretKey;

  private DynamoDbClient dynamoDbClient;

  @PostConstruct
  public void initialize() {
    AwsBasicCredentials awsCreds = AwsBasicCredentials.create(key, secretKey);
    DynamoDbClient client = DynamoDbClient.builder()
        .credentialsProvider(StaticCredentialsProvider.create(awsCreds))
        .region(Region.US_EAST_1).build();

    this.dynamoDbClient = client;
  }

  @PreDestroy
  public void preDestroy() {
    this.dynamoDbClient.close();
  }
}

DynamoDBClient

The DynamoDBClient provides access to the DynamoDB API. All interaction with DynamoDB is done through this class. It has methods for for reading, writing, updating, and other interactions with DynamoDB tables and Items. For more information, refer to the API documentation [19].

Write Observation

Let’s first write an Observation to DynamoDB. Alternatively, you could say we PUT an item to DynamoB, as we are making an HTTP Put request to DynamoDB. We do this using the DynamoDBClient putItem method combined with a PutItemRequest.

Modify Service Class

package com.tutorial.aws.dynamodb.service;

import java.util.HashMap;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import com.tutorial.aws.dynamodb.model.Observation;
import software.amazon.awssdk.auth.credentials.AwsBasicCredentials;
import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;

<snip>

public void writeObservation(Observation observation) {
   HashMap<String, AttributeValue> observationMap = new HashMap<String,
       AttributeValue>();

    observationMap.put("id", AttributeValue.builder()
      .s(observation.getStationid() + observation.getDate() + 
      observation.getTime()).build());

    observationMap.put("stationid", AttributeValue.builder()
      .n(Long.toString(observation.getStationid())).build());

    observationMap.put("date", AttributeValue.builder()
      .s(observation.getDate()).build());

    observationMap.put("time", AttributeValue.builder()
      .s(observation.getTime()).build());

    observationMap.put("image", AttributeValue.builder()
      .b(SdkBytes.fromUtf8String(observation.getImage())).build());

    if (observation.getTags() != null) {
      observationMap.put("tags", AttributeValue.builder()
        .ss(observation.getTags()).build());
    }

    PutItemRequest request = PutItemRequest.builder()
      .tableName("Observation").item(observationMap).build();

    this.dynamoDbClient.putItem(request);
  }
}

AttributeValue

There are four different AttributeValue classes in the DynamoDB Java API. Here we use the one in the software.amazon.awssdk.services.dynamodb.model package (api documentation [20]). Remember, tables store items. An item is comprised of one or more attributes. An AttributeValue holds the value for an attribute. AttributeValue has a builder (api documentation [21]) used to build an AttributeValue instance. An attribute value can be a string, number, binary data, list, or collection. You use the appropriate method corresponding to the datatype to set the AttributeValue object’s value. For instance, for a String use s(String value), binary use b(SdkBytes b), and for a collection of strings use ss(Collection ss). For a complete list, refer to the API documentation.

AttributeValue instances are placed in a Map, where the key is the attribute’s name in the database table. The Observation’s attributes are mapped using the appropriate builder methods.

.s(observation.getStationid() + observation.getDate() + 
       observation.getTime()).build()
observationMap.put("image", AttributeValue.builder()
      .b(SdkBytes.fromUtf8String(observation.getImage())).build());
if (observation.getTags() != null) {
  observationMap.put("tags", AttributeValue.builder()
     .ss(observation.getTags()).build());
}

PutItemRequest

The PutItemRequest wraps the JSON request sent to the DynamoDBClient putItem method. A PutItemRequestBuilder builds a PutItemRequest. Above, we first added the table name, followed by the item to put. The item is a key-value map of the observation’s attributes. After building the PutItemRequest instance, the DynamoDBClient instance uses the request to write the observation to the DynamoDB Observation table.

PutItemRequest request = PutItemRequest.builder().tableName("Observation")
   .item(observationMap).build();
this.dynamoDbClient.putItem(request);

For more information, refer to the API documentation [19].

Create Rest Endpoint

package com.tutorial.aws.dynamodb.api;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.tutorial.aws.dynamodb.model.Observation;
import com.tutorial.aws.dynamodb.service.ObservationService;

@RestController
@RequestMapping(value = "/observations")
public class ObservationApiController {
  @Autowired
  ObservationService observationService;
	
  @PostMapping("/observation")
  public void saveObservation(@RequestBody Observation observation) {
    this.observationService.writeObservation(observation);
  }	
}

Test with Postman

{
  "date": {
    "S": "1999-09-22"
  },
  "id": {
    "S": "2211999-09-22071244"
  },
  "image": {
    "B": "LzlqLzRBQ <snip> JRPT0="
  },
  "stationid": {
    "N": "221"
  },
  "tags": {
    "SS": [
      "observation",
      "river",
      "sample"
    ]
  },
  "time": {
    "S": "071244"
  }
}

Read Observation

Now that we have written an Observation to DynamoDB, let’s create a Rest endpoint that fetches an Observation.

Modify Service Class

public Observation getObservation(String observationId) {
  HashMap<String,AttributeValue> key = new 
    HashMap<String,AttributeValue>();

  key.put("id", AttributeValue.builder().s(observationId).build());
  GetItemRequest request = GetItemRequest.builder()
    .tableName("Observation").key(key).build();
  
  Map<String,AttributeValue> responseItem = 
  this.dynamoDbClient.getItem(request).item();

  Observation observation = new Observation();
  observation.setDate(responseItem.get("date").s());
  observation.setTime(responseItem.get("time").s());
  observation.setImage(responseItem.get("image").b().asUtf8String());
  observation.setStationid(Long.parseLong(responseItem
    .get("stationid").n()));
		
  if(responseItem.get("tags") != null && responseItem.get("tags")
    .ss().size() > 0) {

    HashSet<String> vals = new HashSet<>();
    responseItem.get("tags").ss().stream().forEach(x->vals.add(x));
    observation.setTags(vals);
  }
  return observation;
}

GetItemRequest

The GetItemRequest wraps a JSON Get request to DynamoDB. To fetch a particular Observation we must provide the id to the Get request. The key is a Map of AttributeValue items. In this case we added only one attribute, the id.

GetItemRequest request = GetItemRequest.builder()
    .tableName("Observation").key(key).build();

Create Rest Endpoint

@GetMapping("/observation/{observationid}")
public Observation getObservation(@PathVariable("observationid") String 
  observationId) {

  return this.observationService.getObservation(observationId);

}

Test With Postman

http://localhost:8080/observations/observation/2211992-03-12091312
{
    "stationid": 221,
    "date": "1992-03-12",
    "time": "091312",
    "image": "/9j/4AA <snip> kf/9k=",
    "tags": [
        "rapids",
        "rocks",
        "observation",
        "cold"
    ]
}

Delete Observation

So far we have added and fetched an Observation to DynamoDB. Now let’s delete an Observation.

Modify Service Class

public void deleteObservation(String observationId) {
  HashMap<String,AttributeValue> key = new HashMap<>();
  key.put("id", AttributeValue.builder().s(observationId).build());
  DeleteItemRequest deleteRequest = DeleteItemRequest.builder()
    .key(key).tableName("Observation").build();
  this.dynamoDbClient.deleteItem(deleteRequest);
}

DeleteItemRequest

The DeleteItemRequest wraps a JSON Delete HTTP request. As with all requests, we use a builder. The builder uses the table and the key to delete the Observation.

Create Rest Endpoint

@DeleteMapping("/observation/{observationid}/delete")
public void deleteObservation(@PathVariable("observationid") String 
  observationId) {
  this.observationService.deleteObservation(observationId);
}

Test with Postman

http://localhost:8080/observations/observation/2211992-03-12091312/delete

Update Observation

An Observation can have one or more tags. This is something that seems likely to be added at a later date and/or modified. Let’s create an endpoint that allows adding/modifying an observation’s tags.

Update Service Class

public void updateObservationTags(List<String> tags, String observationId) {
  HashMap<String, AttributeValue> tagMap = new HashMap<String, 
    AttributeValue>();

  tagMap.put(":tagval", AttributeValue.builder().ss(tags).build());
  HashMap<String, AttributeValue> key = new HashMap<>();
  key.put("id", AttributeValue.builder().s(observationId).build());

  UpdateItemRequest request = UpdateItemRequest.builder()
    .tableName("Observation").key(key)
    .updateExpression("SET tags = :tagval")
    .expressionAttributeValues(tagMap).build();

  this.dynamoDbClient.updateItem(request);
}

UpdateItemRequest

The DynamoDBClient instance uses the UpdateItemRequest to build the request to update the item. As with fetching and deleting, it needs a key to properly select the correct item. But it also needs the values to update. You provide an update expression and then provide the attributes. Note that the key for the attribute, :tagval, matches the expression. The request then uses the key and the update expression to update the item.

Add Rest Endpoint

@PostMapping("/observation/{observationid}/updatetags")
public void updateObservationTags(@PathVariable("observationid") String 
  observationId, @RequestBody List<String> tags) {
  
  this.observationService.updateObservationTags(tags, observationId);

}

Test With Postman

http://localhost:8080/observations/observation/2211992-03-12091312/updatetags
["observation","rocks","rapids","cold"]

Batch Write Observations

Sometimes multiple items must be written to a database.

Update Service Class

public void batchWriteObservations(List<Observation> observations) {
  ArrayList<WriteRequest> requests = new ArrayList<>();
  HashMap<String, AttributeValue> observationMap = new HashMap<>();
  for(Observation observation : observations) {
    observationMap.put("id", AttributeValue.builder()
      .s(observation.getStationid() + observation.getDate() + 
      observation.getTime()).build());

    observationMap.put("stationid", AttributeValue.builder()
      .n(Long.toString(observation.getStationid())).build());

    observationMap.put("date", AttributeValue.builder()
      .s(observation.getDate()).build());

    observationMap.put("time", AttributeValue.builder()
      .s(observation.getTime()).build());

    observationMap.put("image", AttributeValue.builder()
      .b(SdkBytes.fromUtf8String(observation.getImage())).build());

    if (observation.getTags() != null) {
      observationMap.put("tags", AttributeValue.builder()
        .ss(observation.getTags()).build());
    }

    WriteRequest writeRequest = WriteRequest.builder()
      .putRequest(PutRequest.builder().item(observationMap)
      .build()).build();

    requests.add(writeRequest);
  }

  HashMap<String,List<WriteRequest>> batchRequests = new HashMap<>();
  batchRequests.put("Observation", requests);
  BatchWriteItemRequest request = BatchWriteItemRequest.builder()
    .requestItems(batchRequests).build();

  this.dynamoDbClient.batchWriteItem(request);
}

The DynamoDbClient batchWriteItem method takes a BatchWriteItemRequest [22] as a parameter. The BatchWriteItem can write or delete up to 25 items at once and is limited to 16 MB of data. Note that it still makes as many calls as you have items; however, it makes these calls in parallel.

You create a List to hold the WriteRequest for each Observation. Each Observation is written to a Map as key-value pairs. The map is added to a WriteRequest, which is then added to the list until all observations are prepared as WriteRequest instances.

 WriteRequest writeRequest = WriteRequest.builder()
      .putRequest(PutRequest.builder().item(observationMap)
      .build()).build();

Each list of WriteRequest instances is added to another map. The table name is the key and the list is the values. In this way a single batch write could write to multiple tables. After creating the map of the lists of WriteRequest instances, the whole thing is used to create a BatchWriteItemRequest which is used by the DynamoDbClient batchWriteItem method.

 HashMap<String,List<WriteRequest>> batchRequests = new HashMap<>();
  batchRequests.put("Observation", requests);
  BatchWriteItemRequest request = BatchWriteItemRequest.builder()
    .requestItems(batchRequests).build();

Create Rest Endpoint

@PostMapping("/observation/batch")
public void batchSaveObservation(@RequestBody List<Observation> 
  observations) {

  this.observationService.batchWriteObservations(observations);

}

Test With Postman

http://localhost:8080/observations/observation/batch
[
    {
      "stationid": 221,
      "date": "2007-12-12",
      "time": "180000",
      "image": "/9j/4AAQSkZJRgABAQA <snip> kf/9k="
    },
    {
      "stationid": 221,
      "date": "2009-05-22",
      "time": "043455",
      "image": "/9j/4AAQSkZJRgABAQAA <snip> /8AD9KhoA//2Q=="
    },
    {
      "stationid": 234,
      "date": "2019-10-18",
      "time": "121459",
      "image": "/9j/4AAQSkZJRgABAQA <snip> VWoGf/9k="
    },
    {
      "stationid": 234,
      "date": "2017-09-22",
      "time": "093811",
      "image": "/9j/4AAQSkZJRgAB <snip> 5//2Q=="
    }
  ]

Conditionally Fetch Observations

A common requirement is to fetch records based upon certain criteria. For example, suppose we wish to fetch all observations belonging to a particular station. When using DynamoDB any variable used for a query must be indexed. So before creating a query, we first create an index on the Observation table’s stationid variable.

Create Index

Secondary Indexes

Secondary Indexes allow retrieving data from a table using an attribute other than the primary key. You retrieve data from the index rather than the table. For more on DynamoDB secondary indexes, refer to the following article by LinuxAcademy: A Quick Guide to DynamoDB Secondary Indexes [23].

Update Service Class

public List<Observation> getObservationsForStation(String stationId){
  ArrayList<Observation> observations = new ArrayList<>();
  Condition condition = Condition.builder()
    .comparisonOperator(ComparisonOperator.EQ)
    .attributeValueList(AttributeValue.builder()
    .n(stationId).build()).build();

  Map<String, Condition> conditions = new HashMap<String, Condition>();
  conditions.put("stationid",condition);

  QueryRequest request = QueryRequest.builder().tableName("Observation")
    .indexName("stationid-index").keyConditions(conditions).build();

  List<Map<String, AttributeValue>> results = this.dynamoDbClient
    .query(request).items();
		
  for(Map<String,AttributeValue> responseItem: results) {
    Observation observation = new Observation();
    observation.setDate(responseItem.get("date").s());
    observation.setTime(responseItem.get("time").s());
    observation.setImage(responseItem.get("image").b().asUtf8String());
    observation.setStationid(Long.parseLong(
      responseItem.get("stationid").n()));
			
    if(responseItem.get("tags") != null && responseItem.get("tags").ss()
      .size() > 0) {
      HashSet<String> vals = new HashSet<>();
      responseItem.get("tags").ss().stream().forEach(x->vals.add(x));
      observation.setTags(vals);
    }
    observations.add(observation);
  }		
  return observations;		
}

First we created a Condition using its associated builder. The condition is “=<the station id passed to function>”.

Condition condition = Condition.builder()
    .comparisonOperator(ComparisonOperator.EQ)
    .attributeValueList(AttributeValue.builder()
    .n(stationId).build()).build();

We then added the Condition to a map and specified stationid as the key and condition as the value. We then built the QueryRequest using its associated builder.

 QueryRequest request = QueryRequest.builder().tableName("Observation")
    .indexName("stationid-index").keyConditions(conditions).build();

Create Rest Endpoint

@GetMapping("/station/{stationid}")
public List<Observation> getObservations(@PathVariable("stationid") String 
  stationId) {
  return this.observationService.getObservationsForStation(stationId);
}

Test With Postman

http://localhost:8080/observations/station/221
[
    {
        "stationid": 221,
        "date": "2009-05-22",
        "time": "043455",
        "image": "/9j/4AA <snip> 0/8AD9KhoA//2Q==",
        "tags": null
    },
    {
        "stationid": 221,
        "date": "2007-12-12",
        "time": "180000",
        "image": "/9j/4 <snip> /rn+q07/sHxfyNUK0Wxkf/9k=",
        "tags": null
    },
    {
        "stationid": 221,
        "date": "1992-03-12",
        "time": "091312",
        "image": "/9j/4AAQSkZJRgABAQAAYAB <snip> K0Wxkf/9k=",
        "tags": [
            "rapids",
            "rocks",
            "observation",
            "cold"
        ]
    },
    {
        "stationid": 221,
        "date": "1999-09-22",
        "time": "071244",
        "image": "/9j/4n0g27Qu <snip> A//2Q==",
        "tags": [
            "observation",
            "river",
            "sample"
        ]
    }
]

Further Topics

There are several topics not explored in this tutorial. First, you can scan a database table. When you scan the table you return all the items in the table. Second, this tutorial did not discuss conditionally updating or deleting items. However, the principles are the same as conditionally querying a table for items. Also, it is helpful to explore the command-line examples for working with DynamoDB, as they help understand the SDK. Finally, we did not cover the Java 1.1 AWS SDK.

From Java 1.1 AWS SDK to Java 2 AWS SDK

There are many more examples and tutorial on the Web using the Java 1.1 API rather than the Java 2 API. However, the primary difference between the two versions is the builder pattern. Many, if not most, of the Java 1.1 tutorials remain useful. The pattern is the same:

In the Java 1.1 SDK you perform these steps using constructors and setters and getters. In the Java 2 SDK you use builders. Practically all classes in the Java 2 AWS SDK use builders. Use this as a starting point if you have a particularly good tutorial using the Java 1.1. SDK. Although not foolproof, doing this has helped me translate many Java 1.1. examples to Java 2 SDK.

Further Resources

Conclusion

In this tutorial we explored the lower-level API of the Java 2 SDK by using the AWS DynamoDB Java API. We wrote an item, updated an item, deleted an item, and batch uploaded items. We also explored conditionally querying items.

As with all of the SDK, it is based upon builders, requests, and the client. You build a request to pass to the DynamoDBClient which in turn returns a response. You do not create a new instance of a request and set properties via setters, but rather, you use a builder to build a request.

DynamoDB is a non-relational database and so you cannot just write a conditional query on any field. You can only use fields that are indexed in a query. This seems logical if you consider that DynamoDB is designed for massive amounts of data that is relatively unstructured.

Git-hub Project